

Linux Mint Developer Guide

[image: _images/qr.png]

If you want to help us develop Linux Mint, you’ve come to the right place!

Welcome to the Linux Mint Development Guide.

Getting Started

	Requirements
	Speaking English

	Knowing how to use Git

	Knowing how to use Github

	Running Linux

	Set Up
	Create a Sandbox

	Install mint-dev-tools

	Technology
	Computer Languages

	GNOME Toolkit and libraries

	Tools

Projects

	Mint tools
	mint-common

	mintbackup

	mintdesktop

	mintdrivers

	mintinstall

	mintlocale

	mintmenu

	mintnanny

	mintreport

	mintsources

	mintstick

	mintsystem

	mintupdate

	mintupload

	mintwelcome

	Cinnamon
	Processes

	Libraries

	Core components

	Visible desktop layer

	XApps
	libxapp

	python-xapp

	xed

	xviewer

	xplayer

	xreader

	pix

	blueberry

	slick-greeter

	lightdm-settings

Development

	Building
	Downloading the source code

	Building a project for the first time

	Building a project

	Respecting the build order

	Daily Builds
	Adding the PPA

	Upgrading software to unstable versions

	Reporting bugs

	Downgrading back to stable

	Coding Guidelines
	Coding Style

Extras

	Cinnamon Javascript Optimization Techniques

Requirements

You don’t need much to get started. If you know more than us you’ll teach us, if we know more than you, we’ll teach you :)

That said, there are a few things you’ll require before going further. Let’s go through them.

Speaking English

Developers come from all around the World, if you speak English you’ll be able to work with anybody.

You’re probably OK if you’re here reading this guide. You don’t need to be fluent or to have great English, but you need to understand English enough to communicate.

Knowing how to use Git

Git is the version control system we’re using to keep track of changes. We’re using it all the time and everywhere.

If you don’t know about Git, stop right there, you need to learn it.

To learn Git, visit Github.io [https://try.github.io/].

Make sure you’re familiar with the concepts of commits, branches, remotes, reverts and rebases.

Hint

If you’re new to Git, enjoy! It’s both easy and really fun.

If you ask developers around the team, most will tell you Git is by far their favorite toy.

Knowing how to use Github

We’re using Github to host our Git repositories and to work together on the code.

You’ll need to have a Github account set up.

To open a Github account, visit Github.com [https://github.com].

You’ll also need to know how to use Github to browse code changes, to fork a project, to make pull requests, etc..

To set up your Github account properly and learn how to use Github, visit the Github Help [https://help.github.com/].

Running Linux

For most projects, you’ll need a computer running the latest version of Linux Mint or LMDE.

You can run an earlier version, or a different distribution, but if you run the latest Linux Mint or LMDE release you’re guaranteed everything will work.

Set Up

This chapter explains how to get your computer set up.

Create a Sandbox

When you build projects it produces .deb packages in their parent directory, so it’s a good idea to create a directory for all your development needs, in which you’ll have subdirectories for each project, or each group of projects. This keeps things tidy and well organized in your computer so it becomes easier to search for code across different projects.

We commonly call our main development directory “Sandbox” and place it in our home folder.

mkdir ~/Sandbox

Of course, you can call your “Sandbox” whatever you want and place it anywhere you want as well.

Install mint-dev-tools

Install the mint-dev-tools package from the Linux Mint repositories.

apt update
apt install mint-dev-tools --install-recommends

It contains useful tools to help you compile and develop Linux Mint projects.

Technology

This chapter gives you an overview of the technology we’re using.

Computer Languages

We use a variety of computer languages in Linux Mint.

You don’t need to know them all and you don’t need to know them well. It really depends on which project you want to work and what you want to achieve.

Here are the languages we use the most.

Python

Scripts which run in terminals or in the backgrounds are usually either written in Bash [https://en.wikipedia.org/wiki/Bash_(Unix_shell)] or in Python [https://www.python.org/].

Some software applications and most configuration tools are also written in Python.

The advantage of Python is that it is easy to learn and fast to develop with.

C

Many software applications and most libraries are written in C [https://en.wikipedia.org/wiki/C_(programming_language)].

The C language is low-level, hard to master and tedious to develop with, but it gives fast performance and it’s most supported language in Linux (everything is accessible from C).

Javascript

The graphical elements of Cinnamon, as well as Cinnamon applets, desklets and extensions are written in Javascript [https://en.wikipedia.org/wiki/JavaScript].

Vala

Vala [https://wiki.gnome.org/Projects/Vala] is used in Slick Greeter (the login screen).

GNOME Toolkit and libraries

All our user interfaces use GTK3 [https://developer.gnome.org/gtk3/stable/] toolkit.

Our development relies heavily on the GNOME libraries [https://developer.gnome.org/], in particular we use Gio, GLib, GObject and dconf a lot.

In C we access these libraries directly.

In Python and Javascript we access them via GObject Introspection [https://gi.readthedocs.io/en/latest/].

Tools

Development environment

To write and edit code, you can use anything you want. Some people prefer lightweight editors while others prefer full-fledge IDEs. It’s a matter of taste. Development is all about fun, so what matters the most is that you love the tools you use.

If you’re not sure what to use, have a look around and try a few editors/IDE until you find your favorite one.

Many developers within the team use Sublime [https://www.sublimetext.com/].

apt update
apt install sublime-text

If you install Sublime, also install its Package Control [https://packagecontrol.io/installation] and then use it to install the GitGutter and TrailingSpaces extensions.

Visual Studio Code [https://code.visualstudio.com/] is also very popular within the team.

You can also check Atom [https://atom.io/], Brackets [http://brackets.io/] and Geany [https://www.geany.org/].

And if you want a complete IDE, there’s also Eclipse [https://www.eclipse.org/] and Netbeans [https://www.eclipse.org/].

Version control

There’s less choice when it comes to version control because we’re all using git and nothing else. All our code is version-controlled with it.

That said, you don’t necessarily have to use the git command line.

Here are a few tools you can use to make using git easier.

gitk is ugly and looks dated (it was developed in Tcl/Tk) but it’s very useful to quickly look at the commit history, to create branches and to cherry pick.

You can install it from the repositories:

apt update
apt install gitk
cd ~/Sandbox/
git clone https://github.com/linuxmint/mintsystem.git
cd mintsystem
gitk

From a project directory, simply type gitk to see the history of commits. You can also specify a branch name to see that branch instead, or a subdirectory to only see the history of a particular directory.

gitg is very similar and it looks better (it’s using Gtk), but its feature set is slightly different.

apt update
apt install gitg
cd ~/Sandbox/
git clone https://github.com/linuxmint/mintsystem.git
cd mintsystem
gitg

From the repository you can also look at git-cola and git-gui.

If you’re looking for a more complete solution, have a look at Gitkraken [https://www.gitkraken.com/].

And last but not least, check the plugins and features available in your IDE/editor. Visual Studio Code, Atom and Sublime in particular come with a lot of support for Git and Github.

Glade

We can write our user interfaces in programming language, or we can use Glade and draw them with the mouse.

Glade [https://developer.gnome.org/glade/stable/] is a tool to design and edit GTK user interfaces and save them in XML (in a .glade or .ui file).

apt update
apt install glade

Once a user interface is saved, we simply tell our program to open that file and we can access the widgets from it programmatically.

Many of our projects separate the code from the user interface.

devhelp

Devhelp shows the reference manuals for the development libraries installed on your computer. For most libraries, the documentation is included in their -dev or -doc package (for instance, if you’re working with GTK3, make sure to install libgtk-3-dev and libgtk-3-doc).

apt update
apt install devhelp

You can launch DevHelp from the applications menu and use it to browse or search the libraries reference manuals. You’ll often need to check the syntax or the arguments of a particular function. It’s nice to be able to get the information locally without having to search online.

d-feet

Some programs use DBus to communicate with others. We use d-feet to browse and troubleshoot DBus.

apt update
apt install d-feet

With d-feet you can quickly find a service on DBus, browse its interface and even call some of its functions manually.

meld

Meld is a visual diff tool. It shows the differences between two files and it’s great at it.

apt update
apt install meld

Other cool tools

Most of our configuration is stored in dconf and we use gsettings (from the command line) to look at it or modify it. If you want to do it graphically, you can install dconf-editor.

awf is useful to test widgets when working on GTK themes.

apt update
apt install awf dconf-editor

Mint tools

The first Mint tools were developed around 2006 when the Linux Mint project was born. Throughout the years, new tools were added to Linux Mint to implement functions that it was missing, or to make the user experience easier and more comfortable.

Some tools, which were very useful in the past, also disappeared when they were no longer needed. Here’s a list of the currently active tools projects developed by Linux Mint.

mint-common

Common utility functions and libraries used by the Mint tools are placed in the mint-common project.

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mint-common].

mintbackup

The Backup Tool, mintbackup, makes it easy to save and restore backups of files within the home directory.

[image: _images/mintbackup.png]

Backup Tool

It also supports the ability to save the list of installed packages, so they can be reinstalled later.

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintbackup].

mintdesktop

This is a tool which provides some additional settings for the MATE desktop environment and the ability to switch window managers.

[image: _images/mintdesktop.png]

Desktop Settings

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintdesktop].

mintdrivers

The Driver Manager, mintdrivers, makes it easy to install proprietary drivers when applicable.

[image: _images/mintdrivers.png]

Driver Manager

It relies on the ubuntu-drivers backend and isn’t available in LMDE.

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintdrivers].

mintinstall

The Software Manager, mintinstall, is an App store for Free Software. It provides access to popular applications from within the repository.

[image: _images/mintinstall.png]

Software Manager

It’s also compatible with Flatpak and able to list flatpaks from multiple flatpak repositories.

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintinstall].

mintlocale

The mintlocale project provides two configuration tools.

The first one is dedicated to locale selection and installation.

[image: _images/mintlocale.png]

Language Settings

The second one is dedicated to input methods:

[image: _images/mintlocale-im.png]

Input Methods

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintlocale].

mintmenu

This is the main application menu for the MATE edition of Linux Mint.

[image: _images/mintmenu.png]

MintMenu

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintmenu].

mintnanny

The Domain Blocker, mintnanny, blocks outgoing traffic towards chosen domain names using /etc/hosts.

[image: _images/mintnanny.png]

Domain Blocker

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintnanny].

mintreport

The System Reports, mintreport, provides system information and helps the user collect information about application crashes.

[image: _images/mintreport.png]

System Reports

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintreport].

mintsources

The Software Sources configuration tool, mintsources, helps the user configure software repositories, choose a mirror, add PPAs and perform maintenance tasks related to package management.

[image: _images/mintsources.png]

Software Sources Configuration Tool

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintsources].

mintstick

The mintstick project provides two utilities.

The first one is dedicated to formatting USB sticks.

[image: _images/mintstick-format.png]

USB Stick Formatter

The second one is used to make live USB sticks from ISO images:

[image: _images/mintstick-iso.png]

USB Image Writer

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintstick].

mintsystem

This project provides small utilities, as well as files, scripts and resources used by the OS.

mintupdate

The Update Manager, mintupdate, provides users with software and security updates.

[image: _images/mintupdate.png]

Update Manager

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintupdate].

mintupload

The Upload Manager, mintupload, allows the user to upload files to a particular location, without browsing it, just by dropping the files with the mouse.

[image: _images/mintupload.png]

Welcome Screen

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintupload].

mintwelcome

The Welcome Screen, mintwelcome, welcomes new users into Linux Mint and guides them through their first steps.

[image: _images/mintwelcome.png]

Welcome Screen

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/mintwelcome].

Cinnamon

The Cinnamon desktop environment is a very large development project.

Between 2006 and 2010 the main desktop environment for Linux Mint was GNOME 2. It was very stable and very popular.

In 2011, Linux Mint 12 was unable to ship with GNOME 2. The upstream GNOME team had released a brand new desktop (GNOME 3 aka “Gnome Shell”) which was using new technologies (Clutter, GTK3), which had a completely different design and implemented a radically different paradigm than its predecessor but which used the same namespaces and thus it couldn’t be installed alongside GNOME 2. Following the decision from Debian to upgrade GNOME to version 3, GNOME 2 was no longer available in Linux Mint.

To tackle this issue two new projects were started:

	A project called “MATE” was started by a developer called Perberos. Its goal was to rename and repackage GNOME 2 so that it could be just as it was before.

	A project called “MGSE” was started by Linux Mint. Its goal was to develop extensions for GNOME 3 to give it back some of the functionality it had lost and which was available in GNOME 2 (a panel, a systray, an application menu, a window-centric alt-tab selector, a window-list..etc).

Linux Mint 12 shipped with both MATE and GNOME3+MGSE.

6 months later and after a huge amount of work, MATE was becoming stable, and from a set of extensions MGSE became a fork of GNOME 3 called Cinnamon.

Linux Mint 13 was the first Linux release to ship with the Cinnamon desktop. Since then Linux Mint has a MATE and a Cinnamon edition, both providing users with a conservative desktop paradigm, one forked from GNOME 2 and the other forked and derived from GNOME 3.

Processes

[image: _images/cinnamon-design.svg]
Binary view of the various processes within a Cinnamon session

The figure above shows the various processes at play within a Cinnamon session.

After you log in, the following processes are automatically started:

	cinnamon-session (the session manager which starts all the other processes)

	cinnamon (which is the visual part of the cinnamon desktop)

	nemo-desktop (which handles the desktop icons and desktop context menu)

	cinnamon-screensaver (the screensaver)

	various csd-* processes (which are settings daemon plugins and run in the background)

The nemo process starts when you browse files and directories. It remains open as long as at least one file manager window is open.

The cinnamon-settings process starts when you launch the System Settings and remains open as long as at least one configuration module is open.

Libraries

cinnamon-menus

The cinnamon-menus library provides utility functions to read and monitor the set of desktop applications installed on the computer. Thanks to cinnamon-menus, Cinnamon can quickly list installed applications within the application menu, fetch application icons for the menu, the alt-tab selector and the window-list and keep this data in sync whenever applications are installed or removed from the computer.

The cinnamon-menus library is developed in C and the source code is available on Github [https://github.com/linuxmint/cinnamon-menus].

cinnamon-desktop

cinnamon-desktop is a set of utility libraries and settings used by other Cinnamon components.

Whenever multiple desktop components need to access the same resource (whether this is a setting or a utility function), we place this resource in cinnamon-desktop.

Here’s an overview of some of the resources currently in cinnamon-desktop:

	cinnamon.desktop

	dconf settings schemas used by several Cinnamon components

	libcvc

	A PulseAudio utility library used to control sound volume and devices

	gnomerr

	An Xrandr utility library to detect, load and save monitor configurations

	gnome-xkb

	A keyboard layout utility library

	gnome-bg

	A wallpaper utility library

	gnome-installer

	A cross-distribution library used to install software applications

The cinnamon-desktop library is developed in C and the source code is available on Github [https://github.com/linuxmint/cinnamon-desktop].

muffin

Muffin, or libmuffin to be more precise is a window management library.

Within the Cinnamon desktop environment, the Window Manager isn’t running in a separate process. The main cinnamon process implements the libmuffin library and therefore runs both the visible components (panel, applets..etc) and the window manager.

Note

The muffin package also provides a muffin binary. This binary is a small program which implements libmuffin and provides a minimal window manager, sometimes used by the developers as a troubleshooting tool. Note that whether or not muffin is installed by default in Linux Mint, it doesn’t run by default in a Cinnamon session. The cinnamon process, which also implements libmuffin, is the default window manager.

The clutter and cogl libraries are also part of the muffin package now. Clutter is a library for creating and displaying both 2d and 3d graphical elements. It is used both by muffin itself (eg. for compositing and setting up the stage), and also by St in cinnamon (all St widgets are clutter actors). Cogl is a library that clutter uses for 3d rendering.

Muffin is developed in C and the source code is available on Github [https://github.com/linuxmint/muffin].

cjs

CJS is Cinnamon’s Javascript interpreter. It uses MozJS (Mozilla’s SpiderMonkey [https://www.mozilla.org/js/spidermonkey/]) and makes it possible to work with GObject and interact with GIR, GNOME and Cinnamon libraries using that language.

CJS is run by and within the main cinnamon process and the parts of the desktop written in Javascript are contained in the main Cinnamon component.

CJS is developed in C++ and Javascript and the source code is available on Github [https://github.com/linuxmint/cjs].

Core components

cinnamon-session

The Cinnamon session manager is responsible for launching all the components needed by the session after you log in, and closing the session properly when you want to log out.

Among other things, the session manager launches the core components required by the session (such as the desktop itself and its components), as well as applications which are configured to start automatically.

Cinnamon-session also provides a DBus interface called the Presence interface, which makes it easy for applications such as media players to set the sessions as busy and inhibit power management (suspend, hibernate, etc…) and the screensaver during video playback.

Last but not least, the session management lets applications register so they can be closed cleanly. The text editor for instance is registered to the session when launched and interacts with it on logout. If a document isn’t saved, the session is aware of it and lets you save your work before proceeding to log out.

cinnamon-settings-daemon

cinnamon-settings-daemon is a collection of processes which run in the background during your Cinnamon session.

Here’s a description of some of these processes.

	csd-automount

	Automatically mounts hardware devices when they are plugged in

	csd-clipboard

	Manages the additional copy-paste buffer available via Ctrl+C/Ctrl+V

	csd-housekeeping

	Handles the thumbnail cache and keeps an eye on the space available on the disk

	csd-keyboard

	Handles keyboard layouts and configuration

	csd-media-keys

	Handles media keys

	csd-mouse

	Handles mice and touch devices

	csd-orientation

	Handles accelerometers and screen orientation

	csd-power

	Handles battery and power management

	csd-print-notifications

	Handles printer notifications

	csd-wacom

	Handles wacom devices

	csd-xrandr

	Handles screen resolution and monitors configuration

	csd-xsettings

	Handles X11 and GTK configuration

Cinnamon-settings-daemon is developed in C and the source code is available on Github [https://github.com/linuxmint/cinnamon-settings-daemon].

Visible desktop layer

cinnamon-screensaver

The Cinnamon screensaver is responsible for locking the screen and to a lesser extent for handling some power management functions (although most of these are handled by csd-power within the Cinnamon Settings Daemon).

Cinnamon-screensaver is developed in Python and the source code is available on Github [https://github.com/linuxmint/cinnamon-screensaver].

cinnamon

The Cinnamon github project is the biggest and most active project within the overall project.

It contains various subcomponents written in C:

	St

	Cinnamon’s widget toolkit written on top of Clutter

	Appsys

	An abstraction of Gio.AppInfo and cinnamon-menus, providing metadata on installed applications

	DocInfo

	An abstraction of recently opened documents

	Tray

	A small library for managing status icons

The visible layer of the desktop is written in Javascript:

	Cinnamon JS

	The panels, window management, HUD, effects and most of what you see…

	Applets

	The applets within the panel

	Desklets

	The desklets on top of the desktop

The System Settings, its configuration modules and utility scripts are written in Python.

Cinnamon is developed in C, Python and Javascript and the source code is available on Github [https://github.com/linuxmint/cinnamon].

nemo

Nemo is Cinnamon’s file manager. When you open up your home directory or browse files you’re running Nemo.

Another little part of Nemo is nemo-desktop. Its role is to handle desktop icons and the desktop context menu.

When you log in, nemo-desktop is started automatically by cinnamon-session. The nemo process itself only starts when you’re browsing through the directories and stops when you close the last opened file manager window.

Nemo is developed in C and the source code is available on Github [https://github.com/linuxmint/nemo].

nemo-extensions

Nemo provides a set of APIs and is very easy to extend, both in C and in Python. nemo-extensions is the Github project where common extensions are stored.

Some Nemo extensions are developed in C and some in Python. Their source code is available on Github [https://github.com/linuxmint/nemo-extensions].

cinnamon-control-center

Although cinnamon-settings (which is part of the Cinnamon project itself) and most of its modules are written in Python. A few configuration modules are still written in C.

Note

Historically, when Cinnamon was forked from GNOME 3, all configuration modules were written in C, as part of gnome-control-center. At the beginning of the Cinnamon project, all configurations modules were thus written in C and were part of cinnamon-control-center. Since then the vast majority of modules were rewritten from scratch in Python and moved to the Cinnamon project itself.

Nowadays, only a few modules are still in cinnamon-control-center:

	color

	Color profiles

	datetime

	Date and Time configuration

	display

	Display and monitors configuration

	network

	Network configuration

	online-accounts

	Online Accounts configuration

	wacom

	Wacom devices configuration

Cinnamon-control-center is developed in C and the source code is available on Github [https://github.com/linuxmint/cinnamon-control-center].

XApps

A project called “X-Apps” was started in 2016 to produce generic applications for traditional GTK desktop environments.

The idea behind this project is to replace applications which no longer integrate properly outside of a particular environment (this is the case for a growing number of GNOME applications) and to give our desktop environments the same set of core applications, so that each change, each new feature being developed, each little improvement made in one of them will benefit not just one environment, but all of them.

The core ideas for X-Apps are:

	To use modern toolkits and technologies (GTK3 for HiDPI support, gsettings etc..)

	To use traditional user interfaces (titlebars, menubars)

	To work everywhere (to be generic, desktop-agnostic and distro-agnostic)

	To provide the functionality users already enjoy (or enjoyed in the past for distributions which already lost some functionality)

	To be backward-compatible (in order to work on as many distributions as possible)

Within Linux Mint, users didn’t need to adapt to X-Apps, because in many cases, they were very similar or exactly the same as the applications people were already using. For instance, Totem 3.18 was radically different than Totem 3.10 which shipped with Linux Mint 17, but Xplayer 1.0 (which was the default media player in Linux Mint 18) was exactly the same. The goal of the X-Apps is not to reinvent the wheel. Quite the opposite in fact, it’s to guarantee the maintenance of applications we already enjoyed and to steer their development in a direction that benefits multiple desktop environments.

It makes no sense to develop 3 different text editors, 5 different calculators and so on. When we work on projects like these, we want to make it count. An improvement in the text editor shouldn’t benefit only one edition, it should benefit all of them.

All three editions of Linux Mint come with the same XApps libraries and applications. When working on XApps, our development efforts are focused on improving all desktops.

libxapp

This is the XApps library. Anything that is cross-desktop goes in there.

It’s available in Python and JS as well, through GObject Introspection.

This project is developed in C and its source code is available on Github [https://github.com/linuxmint/xapps].

python-xapp

This is a small Python library providing extra functionality.

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/python-xapp].

xed

Xed is based on Pluma and acts as the default text editor.

[image: _images/xed.png]

Text Editor

This project is developed in C and its source code is available on Github [https://github.com/linuxmint/xed].

xviewer

Xviewer is based on Eye of GNOME and acts as the default image viewer.

[image: _images/xviewer.png]

Image Viewer

This project is developed in C and its source code is available on Github [https://github.com/linuxmint/xviewer].

xplayer

Xplayer is based on Totem and acts as the default media player for music and videos.

[image: _images/xplayer.png]

Multimedia Player

This project is developed in C and its source code is available on Github [https://github.com/linuxmint/xplayer].

xreader

Xreader is based on Atril and acts as the default document and PDF reader.

[image: _images/xreader.png]

Document Viewer

This project is developed in C and its source code is available on Github [https://github.com/linuxmint/xreader].

pix

Pix is based on gThumb, which is an application to organize your photos.

[image: _images/pix.png]

Pix

This project is developed in C and its source code is available on Github [https://github.com/linuxmint/pix].

blueberry

The Bluetooth tool, blueberry, is a frontend to gnome-bluetooth with systray support.

[image: _images/blueberry.png]

Bluetooth

The GNOME Bluetooth frontend was removed from gnome-bluetooth and made part of gnome-control-center, essentially making gnome-bluetooth useless outside of GNOME. Blueberry provides that missing frontend and makes it easy for other GTK desktops to use gnome-bluetooth.

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/blueberry].

slick-greeter

Slick-greeter is the default login screen, it’s a LightDM greeter originally forked from unity-greeter and modified to work on its own (without gnome-settings-daemon, gnome or unity).

[image: _images/slick-greeter.png]

Slick Greeter

This project is developed in Vala and its source code is available on Github [https://github.com/linuxmint/slick-greeter].

lightdm-settings

The lightdm-settings project provides a configuration tool to set up LightDM and slick-greeter.

[image: _images/lightdm-settings.png]

Login Window

This project is developed in Python and its source code is available on Github [https://github.com/linuxmint/lightdm-settings].

Building

Once you’ve installed mint-dev-tools, building Linux Mint projects from source is extremely easy.

Downloading the source code

Use git clone to get the source from github.

For instance, to get the source for mintinstall type:

cd ~/Sandbox
git clone https://github.com/linuxmint/mintinstall.git

Building a project for the first time

Use mint-build to build a project for the first time.

mint-build doesn’t just build the project, it also fetches and installs the build dependencies (i.e. the packages which are required for the build to succeed).

To build mintinstall you would type:

cd ~/Sandbox/mintinstall
mint-build

When the build is complete, the resulting binary .deb packages are located in the parent directory (in this example in ~/Sandbox).

Building a project

If all the build dependencies are already installed for a particular project (this is done by mint-build the first time you build a project), you can build faster by just calling dpkg-buildpackage.

To build mintinstall you would type:

cd ~/Sandbox/mintinstall
dpkg-buildpackage

Respecting the build order

If new changes in the project you’re trying to build require new changes in another project you might need to build and install that other project first.

In general it’s a good idea to build mint-common and xapps first.

Daily Builds

If you want to keep up to date with the latest git changes, you don’t need to rebuild everything all the time, you can use the Daily Builds PPA instead.

Important

The Daily Builds PPA contains daily builds of the very latest changes pushed by the developers on github. By using this PPA you’ll upgrade from stable to unstable versions which might introduce regressions or not work at all.

Adding the PPA

To add the PPA to your computer, open a terminal and type:

sudo add-apt-repository ppa:linuxmint-daily-build-team/daily-builds
sudo apt-get update

Upgrading software to unstable versions

Use the Update Manager to upgrade your software to unstable versions.

Reporting bugs

If you notice a regression, you can report it on the Alpha Testing Github project [https://github.com/linuxmint/alpha-testing].

Make sure to read the disclaimers and information provided by this project before reporting issues. This project is only about regressions which appeared after the latest stable version of projects, not issues which already existed before then.

Downgrading back to stable

To go back to stable versions, either restore a Timeshift snapshot, or remove the PPA, update the APT cache and use the Maintenance -> Downgrade foreign packages section of the Software Sources tool.

Coding Guidelines

Coding Style

Simplicity

Prefer simple instructions over complicated ones, even if that means using more lines or duplicating code.

Avoid one-liners, complicated conditions, language specificities and abstract/generic patterns.

If your code needs to be explained, comment it.. or even better, rewrite it in a simpler way.

Consistency

Adopt the coding style used in the project you’re contributing to.

This guarantees consistency between your new code and the existing code.

Indentation

In new projects or new files, do not use tabs. Use 4 space characters instead.

Trailing spaces

Do not leave trailing spaces in your code.

Hint

In Sublime, install the TrailingSpaces plugin to automatically highlight trailing spaces and give you the option
to easily delete them.

Maximum Line length

Fit your code within 120 columns.

If a line of code is longer than 120 characters, break it into two or more lines.

Hint

In Sublime, select View ‣ Ruler ‣ 120 to show a ruler.

Cinnamon Javascript Optimization Techniques

This is a temporary chapter about Javascript optimization techniques in Cinnamon. It will be part of the dev guide when the Cinnamon design is described and the content of this section will then fit into the right place.

Notes

Some of these optimization techniques don’t make sense to us and we cannot explain them all, but they were tested methodically.

Jason is the only one in the team to see an impact from them. He’s running a slow CPU with multi-monitors and a low-latency kernel with NVIDIA drivers. These were tested on Cinnamon 4.0. Performance boosts are witnessed in terms of input lag when moving windows and selecting text in Visual Studio Code.

These changes were tested in windowManager.js, an area of Cinnamon which is run constantly and which is prominent within the single execution thread.

Reducing the overal number of gsettings signal listeners

Here’s an example: https://github.com/linuxmint/Cinnamon/commit/47bef00856e3b1f5a1e1a19e829dec498376d033

Reducing the number of listeners has a significant positive impact on performance.

Using declared functions in signal listeners

We found out that using:

settings.connect('changed::property', (s, k) => { this.property = s.get_int(k); });

was slower than:

settings.connect('changed::property', (s, k) => this.setProperty(s, k));

i.e. declaring a function and referring to that function within the callback was faster than using an anonymous block of instructions in the callback.

The impact was significant.

Factorizing callbacks

settings.connect('changed::int_property1', (s, k) => this.setProperty1(s, k));
settings.connect('changed::string_property2', (s, k) => this.setProperty2(s, k));

was slower than:

settings.connect('changed::int_property1', (s, k) => this.setProperty(s, k, 'int'));
settings.connect('changed::string_property2', (s, k) => this.setProperty(s, k, 'string'));

It makes setProperty() slower of course, although that’s usually not critical, but it makes the overal project faster.

The impact wasn’t as significant and this optimization is probably only suited to critical paths such as windowmanager.js.

Grouping properties in smaller objects

Using this.smallobject.property is faster than this.property.

The idea is to avoid adding properties to large objects such as Main.wm.

So instead of using:

Main.wm.desktop_effects_enabled, we use Main.wm.settings.desktop_effects_enabled.

The impact is positive but subtle and this optimization is probably only suited to critical paths such as windowmanager.js.

Using hashmaps vs properties

Using this.smallobject['property'] is faster than this.smallobject.property.

The idea is confirmed by https://jsperf.com/dot-notation-vs-square-bracket-notation.

So instead of using:

Main.wm.desktop_effects_enabled, we use Main.wm.settings['desktop_effects_enabled'].

The impact is positive but subtle and this optimization is probably only suited to critical paths such as windowmanager.js.

Index

 _images/blueberry.png
Bluetooth

Devices Setting

)

Visible as "Storm - Atheros" and available for Bluetooth file transfers.

Devices €
Galaxy Note 4 Disconnected
Parrot ZIK20V2.05 Disconnected
Macbook Disconnected

Storm - Intel Not et Up

_images/mintdesktop.png
Desktop icons.
Select the items you want to see on the desktop:
[computer
[Home

Trash

Network
Mounted Volumes

Interface

_images/mintdrivers.png
Driver Manager. -0

NVIDIA Corporation
This devic s sing an aitemativ drver.
nvidia-384 (recommended)
© version 384.90-0ubuntv0.16.04.2
NVIDI binary diver - version 36490
xserver-xorg-video-nouveau (open source)

Version 1:1.0.12-1build2
X.0rg X server - Nouveau display drver

Intel(R) Core(TM) i7-5775C CPU @ 3.30GHz

Processor microcode

intel-microcode
© version 3.20170707.1~ubuntu16.04.0
Processor microcode firmware for Intel CPUs

Do not update the CPU microcode

1 proprietary driver in use. Revert | Apply Changes

_images/lightdm-settings.png
Login Window -~ 0

Background

Background ‘ Jusi/share/backgrounds/

Background color

Draw user backgrounds

Drawa grid

Themes

_images/mintbackup.png
Backup Tool = S

Personal data
- Your files, settings and the content of your home directory

Restore... Back Up Now...

Software selection
‘The st of applications installed on your computer

Restore... Back Up Now...

_images/mintinstall.png
Software Manager

Scribus. Audacity Mpv Dropbox Banshee
() T a @
Blender "Rhythmbox 'GNOME Maps Filezilla Calibre
Categories
= e = e
Internet ‘ ‘ Office ‘ Programming ‘ ‘ Science and Education
Sound and video ‘ ‘ System tools ‘ Editors' Picks. ‘ ‘ Flatpak

_images/mintlocale-im.png
Input method framework: | Feitx v =

@ Helo
ThIBIE
B simplified Chinese
To write in Hiragana, Katakana and Kanji follow the steps below:

B Traditional Chinese

-Install the language support packages: Already installed
- Change the input method framework to Feitx.

B Korean
~Log outand log back in.
Thai
= Thai - Right-lick the Feitx applet in the system tray and choose "Configure".
B Vietnamese I the Feitx configuration screen, add the Mozc input method (uncheck "Only Show Current
Language” if necessary).
B Telugu - Switch between input methods with Ctrl+Space.

Note: Mozc can also be used

the IBu:

put method.

_images/mintlocale.png
Language Settings = s

Language
Language, inteface, date and time.

Region
Numbers, currency, addresses, measurement.

System locale
Language: Englis, Ireland
Region: English, Ireland

Language support
58 languages installed

French, France UTF8

French, France UTF8
Apply System-Wide

Install / Remove Languages...

_images/mintreport.png
System Reports

3% Systeminformation | Crash reports:

Wed 2019-05-01 14:14:311ST 3795 /ust/lib/x86_64-linux-gnu/cinnamon-settings-daemon/csd-keyboard

Wed 2019-05-01 13:53:13IST 3603 /ust/lib/x86_64-linux-gnu/cinnamon-settings-daemon/csd-keyboard
Q Information reports

Tue2019-04-3023:15:33IST 8693 /usi/bin/nemo

Stack trac

When seeking help, check For existing bug reports, pastebin the trace, share crash.tar.gz (from Local Files) and explain how to
reproduce the crash

Local Files
PID: 12292 (nemo) Bug Tracker
UID: 1000 (clem)
GID: 1000 (clem) Pastebin

Timestamp: Tue 201 23:36 IST (17h ago)
Command Line: nemo
Executable: /usi/bin/nemo
Control Group: /userslice/user-1000.slice/user@1000.service/gnome-terminal-serverservice.
Unit: user@1000.service
ser Unit: gnome-terminal-serverservice
Slice: user-1000.slice
Owner UID: 1000 (clerr
Boot ID: ee0d|
Machine ID: 2a5d5
Hostname: airtop
Storage: /var/lib/systemd/coredump/core.nemo.1000.ee0d82da68847529629a94d12fadfa;

Message: Process 12292 (nemo) of user 1000 dumped core.

Developers need to know where the code fails or how to reproduce the issue. Always provide 3 trace and reliable instructions
o trigger/observe the problem.

_images/mintsources.png
Main tess9) | 3 http/packages inuxmintcom |

Base (ioni) | B8 hitp/archiveubuntu.com/ubuntu |

O AuthenticationKeys | optional Sources

% aintenance Source code repositories.
Debug symbols =
Unstable packages (romeo) =

Restore the default settings

_images/mintmenu.png
Places
B Computer
80 Home Folder
@ Network
[Deskiop
B Trash

System
(@) software Manager
(B Package Manager
(S] control Center
@ Terminal

0 Lock Screen

Logout

© it

Favorites
a Web Browser
Firefox Web Browser
@ Image Viewer
Pix
Calculator
s perform arithmetic,
a Terminal
Use the command line

Displays

Change resolution an..

All applications >

Mail Client
Thunderbird Mail

Player
Rhythmbox

Text Editor
Edittext files

sound
Change sound volur

System Monitor

View current process...

_images/mintnanny.png

_images/mintupdate.png
Do you want to switch to a local mirror?

old Version

New Version

Mint themes
‘mint-translations

Translation

‘mintupload
Uploads files on the Internet

Image viewer and browser
python-xapp

Python 2 XApp library
slick-greeter

slick-looking LightDM greeter
timeshift
System restore ul
xapp

XApp library
xed

Text editor

xplayer
Media player

1.7.8-unstable-201904021300~ubuntu18.04.1

2018.12.11

413

140

124

17 8-unstable2013
2018121 1-unstably

4..3-unstable-201

2.03-unstable-2019

1.40-unstable2018
124-unstable2019
18.9.1.2-unstable-2 3
1.4.5-unstable-201 9‘
202-unstable 2019

2.02-unstable-2018

Description | Packages Changelog

‘Shows important information about the release/edition of Linux

176 updates selected (1 GB)

_images/mintupload.png

_images/mintstick-format.png
USB Stick Formatter o

Format: | TOSHIBAMQO1ABB200 (/dev/sdq-2T8 + |as | FAT32 v |

Volume label: | US8 STICK —

_images/mintstick-iso.png
USB Image Writer o

wiiteimage:| (None) @ >

» Details

_images/mintwelcome.png
Welcome

? Welcome to Linux Mint

st Steps
. ‘Welcome to your new operating system!
[Documentation

This welcome screen will guide you through your
‘get more information about Linux Mint.

tsteps, show you how to find help and where to

In the name of the development team and everyone involved in the project, we'd like to thank you for
choosing Linux Mint. We hope you'll enjoy using it as much as we enjoy working on it.

Have a great time and don't hesitate to send us your feedback.

Cinnamon 64-bit

Show this dialog at startup

_images/pix.png

